Semi-stability and reduction mod p

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hilbert-kunz Multiplicity and Reduction Mod P

In this paper, we study the behaviour of Hilbert-Kunz multiplicities (abbreviated henceforth to HK multiplicities) of the reductions to positive characteristics of an irreducible projective curve in characteristic 0. For instance, consider the following question. Let f be a nonzero irreducible homogeneous element in the polynomial ring Z[X1, X2, . . . , Xr], and for any prime number p ∈ Z, let ...

متن کامل

Reduction Mod P of Standard Bases

We investigate the behavior of standard bases (in the sense of Hironaka and Grauert) for ideals in rings of formal power series over commutative rings with respect to specializations of the coefficients. For instance, we show that any ideal I of the ring of formal power series A[[X]] = A[[X1, . . . , XN ]] with coefficients in a Noetherian ring A admits a standard basis whose image under every ...

متن کامل

RANK p − 1 MOD - p H - SPACES

Different constructions by Cooke, Harper and Zabrodsky and by Cohen and Neisendorfer produce torsion free finite p-local H-spaces of rank l < p−1. The first construction goes through when l = p− 1 and we show the second does as well. However, the space produced need not be an H-space. We give a criterion for when an H-space is obtained. In the special case of rank 2 mod-3 H-spaces, we also give...

متن کامل

NOTES ON PRIMES P ⌘ 1 mod D AND A P � 1 / D ⌘ 1 mod

Let d > 0 be a squarefree integer and a be an integer, which is not 1 nor a square. Let P(a,d)(x) be the number of primes p  x such that p ⌘ 1 mod d and a(p 1)/d ⌘ 1 mod p. Numerical data indicate that the function as approximately equal to a constant multiple of ⇡(x)/(d'(d)) for su ciently large x, where ⇡(x) is the number of primes up to x and '(d) is the Euler-' function. The involved const...

متن کامل

Lower Bounds for (MOD p - MOD m) Circuits

Modular gates are known to be immune for the random restriction techniques of Ajtai Ajt83], Furst, Saxe, Sipser FSS84], Yao Yao85] and H astad H as86]. We demonstrate here a random clustering technique which overcomes this diiculty and is capable to prove generalizations of several known modular circuit lower bounds of Barrington, Straubing, Th erien BST90], Krause and Pudll ak KP94], and other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1998

ISSN: 0040-9383

DOI: 10.1016/s0040-9383(97)00038-4